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Abstract. Interpretations of post-fire condition and rates of vegetation recovery can influence management priorities,

actions and perception of latent risks from landslides and floods. In this study, we used the Waldo Canyon fire (2012,
Colorado Springs, Colorado, USA) as a case study to explore how a time series (2011–2016) of high-resolution images can
be used to delineate burn extent and severity, as well as quantify post-fire vegetation recovery.We applied an object-based
approach to map burn severity and vegetation recovery using Worldview-2, Worldview-3 and QuickBird-2 imagery. The

burned area was classified as 51% high, 20%moderate and 29% low burn-severity. Across the burn extent, the shrub cover
class showed a rapid recovery, resprouting vigorously within 1 year, whereas 4 years post-fire, areas previously dominated
by conifers were divided approximately equally between being classified as dominated by quaking aspen saplings with

herbaceous species in the understorey or minimally recovered. Relative to using a pixel-based Normalised Difference
Vegetation Index (NDVI), our object-based approach showed higher rates of revegetation. High-resolution imagery can
provide an effective means tomonitor post-fire site conditions and complement more prevalent efforts withmoderate- and

coarse-resolution sensors.

Additional keywords: burned area, GeoEye-1, Landsat, QuickBird-2, revegetation, severity, Wildfire, Worldview-2,
Worldview-3.
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Introduction

Fire is an important driver of change and ubiquitous in almost
all terrestrial ecosystems (Giglio et al. 2013; Sommers et al.

2014). Using remotely sensed imagery tomonitor patterns of fire,
burn severity and vegetation recovery can inform efforts to track
fire-induced changes to biomass and species distribution (Bond

et al. 2005; Goetz et al. 2005), nutrient cycling (Conard et al.

2002; Bond-Lamberty et al. 2007), greenhouse gas emissions
(Palacios-Orueta et al. 2005; Randerson et al. 2005) and land-
scape heterogeneity (Parisien et al. 2006; Hayes and Robeson

2011). Efforts to map fire extent and post-fire recovery have been
dominated by coarse-resolution sensors such as the Advanced
Very High Resolution Radiometer (AVHRR) (Moreno-Ruiz

et al. 2014), Moderate Resolution Imaging Spectroradiometer
(MODIS) (Roy et al. 2008; Van Leeuwen 2008; Veraverbeke
et al. 2014) and moderate-resolution sensors, such as Landsat

(Bastarrika et al. 2014; Boschetti et al. 2015; Hawbaker et al.
2017). However, with the increased collection and availability
of high-resolution imagery (e.g. QuickBird-2, Worldview-2,

Worldview-3, GeoEye-1, RapidEye), these sources are also
starting to be used tomap fire events either alone (Mitri and Gitas
2006, 2008; Holden et al. 2010; Dragozi et al. 2014, 2016) or
paired with Landsat imagery (Chen et al. 2015; Wu et al. 2015).

The resolution at which fires are mapped and monitored can
be expected to influence our detection of within-fire heteroge-
neity (Lentile et al. 2006; Stroppiana et al. 2012). Heterogeneity

in fire effects is common across a fire and can influence the post-
fire successional trajectory and rate of vegetation recovery
(Picket and White 1985; Turner et al. 1999). However, very

few studies have used high-resolution imagery as the primary
means to map fire effects, despite its finer resolution and
potential to provide additional detail that could be useful in
monitoring and managing burned areas. Examples of efforts to

do so include studies that have, (1) related field-based burn
severity to high-resolution imagery (Holden et al. 2010; Dragozi
et al. 2016); (2) used high-resolution imagery to distinguish

areas burned by surface and crown fires (Mitri and Gitas 2013);
and (3) applied an object-based approach to map burn extent
with high-resolution imagery (Dragozi et al. 2014).

A wide range of algorithms and techniques have been
employed to map burned-area extent and severity. Most com-
monly, approaches rely on a reduction in visible and near-

infrared surface reflectance (NIR, 0.4–1.3 mm) associated with
charring and vegetation mortality (Trigg and Flasse 2000) and a
rise in short wave infrared (SWIR) reflectance (1.6–2.5 mm)
associated with increased soil exposure, absorption by charred
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vegetation and reduction in evapotranspiration (Trigg and
Flasse 2000; Smith and Hudak 2005). To account for these
changes, the Normalised Burn Ratio (NBR) (Key and Benson

2006) and Normalised Difference Vegetation Index (NDVI)
(Tucker 1979) are two indices commonly utilised to map
burned-area extent and evaluate fire severity (Lentile et al.

2006), as well as monitor post-fire vegetation recovery (Goetz
et al. 2005; Chu and Guo 2013; Soulard et al. 2016). Current
high-resolution satellites, however, do not typically provide a

SWIR band,which is required for common indices such asNBR.
Correspondingly, NDVI, which relies on the red and near-
infrared bands, has been commonly used to map fire dynamics
and recovery with high-resolution imagery (Mitri and Gitas

2010, 2013). More recently, object-based approaches to image
processing that consider not only spectral data but also object
size, shape and texture in relation to other objects in the image

have shown strong potential for mapping burned-area extent
(Dragozi et al. 2014; Lohberger et al. 2017). Object-based
approaches could also be used to classify post-fire recovery,

but are only starting to be developed (Mitri and Gitas 2013;
Martı́n-Alcón and Coll 2016).

In the present study, we explored the role that high-resolution

imagery could serve in monitoring a fire event, using theWaldo
Canyon fire, which occurred near the city of Colorado Springs,
Colorado, USA, in 2012 as a case-study example. As the fire
occurred across both a coniferous forest and scrub-shrub habitat,

the case study is relevant to monitoring burned areas in both
ecosystem types globally. Because of the extensive tree mortal-
ity and steep slopes, to date efforts to assess and monitor the

recovery following the Waldo Canyon fire by public agencies
and non-profit groups have focussed on the effects of the fire
on water and soil dynamics (e.g. soil erosion, debris flows,

landslides and stream flow) (Rosgen et al. 2013; Johnson et al.

2014; Dennis et al. 2015). However, in moderate-to-severe fire
events, groundcover (e.g. vegetation, litter, mulch) has been
consistently found to be the most significant factor to reduce

hillslope erosion (Wagenbrenner et al. 2006; Larsen et al. 2009)
and can be observed using remotely sensed imagery. Limited
availability of time series of high-resolution images has

restricted their use formonitoring fire effects. However, because
several high-resolution images have been collected both before
and following the Waldo Canyon fire, a unique opportunity

presented itself to explore how high-resolution imagery can
improve our ability to remotely characterise burned-area extent,
severity and the recovery of vegetation following the fire. Our

research questions included:

1. How does heterogeneity in burned-area extent and severity

vary with image resolution?
2. How do post-fire recovery rates vary among vegetation

types, as mapped by high-resolution images?

Methods

Study area

The Waldo Canyon fire was a human-caused fire within the
Rampart Range, immediately north-west of the city of Colorado

Springs, in El Paso County, Colorado, USA. Fire size was
reported as ,7400 ha by the US Forest Service’s Burned Area

Emergency Response (BAER) team. Elevation within the burn
perimeter ranged from 1979 to 2953 m. The fire began on
23 June 2012, and was 100% contained by 10 July 2012 (USFS

2012). It occurred on both public and private land with ,80%
occurring on land owned by the US Forest Service. Landslides,
debris flows and hillslope erosion were an immediate concern

because of the severity of the fire and steep slopes. Slopes within
the burn perimeter ranged from 0 to 648with amean slope of 198.
Following the fire, the BAER team applied aerial applications

of agricultural straw mulch to 437 ha and woodshred mulch to
792 ha to help reduce hillslope erosion (USFS 2012). In-stream
and hillslope stabilisation activities occurred across the burn
extent from the summer of 2012 and have continued to present,

led by a diverse range of public and non-profit groups including
the US Forest Service, Colorado Springs Utility, City of
Colorado Springs, Rocky Mountain Field Institute and the

Coalition for the Upper South Platte. Pre-fire, the site was
dominated by Douglas-fir (Pseudotsuga menziesii), ponderosa
pine (Pinus ponderosa) and limber pine (P. flexilis), with

Gambel oak (Quercus gambelii) dominating the lower foothills
(Fig. 1). Prolific resprouting of Gambel oak following the fire
allowed for a rapid recovery in the lower elevations. In the

higher elevations, quaking aspen (Populus tremuloides) were
well established by 2015, and were prolific throughout with an
understorey of grasses and mullein (Verbascum thapsus).
Species present post-fire were identified through communica-

tions with personnel familiar with the burned area as well as
field visits that occurred on 25 and 26 October 2017.

Pixel-based burn area classification

High-resolution images (DigitalGlobe, Westminster, CO,

USA) (GeoEye-1, QuickBird-2 and Worldview-2) were col-
lected both before the fire and yearly following the fire
(Fig. 1). Details regarding differences in the satellite char-
acteristics are shown in Table 1, and a complete list of images

utilised in the analysis are shown in Table 2. Images were
acquired at 2-m resolution and processing Level 1, which
allowed us to manually orthorectify each of the images. Ima-

ges were orthorectified using PCI Geomatica’s Optical Sat-
ellite Modelling with the Rational Function (RPC Model). A
2015 National Agricultural Imagery Program (NAIP) image

(1-m resolution) was used as the reference image with the US
Geological Survey’s (USGS) 10-m National Elevation Dataset
(NED) (Gesch et al. 2002). The images were converted from

top-of-atmosphere to ground reflectance using ATCOR, PCI
Geomatica’s Atmospheric Correction module (Richter and
Schläpfer 2016). Each 2012 GeoEye-1 and Worldview-2
image was processed into burned-area extent using a super-

vised maximum-likelihood classification. Training polygons
were selected to represent (1) charred surfaces with high-
conifer density and high-conifer mortality, (2) charred sur-

faces where pre-fire vegetation was dominated by shrubs, bare
soil or low density conifers, and (3) high-conifer density where
the signal was dominated by needles killed but not consumed.

Each of these burned classes was classified separately, because
of the distinct spectral signal and then merged post-classifi-
cation. Each training polygon (two per category, six total)
averaged 1 ha in size. Training polygons for category 3 were
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smaller (,0.25 ha) as this category typically occurred in

narrow bands along the edge of areas in category 1. Approx-
imately 12 000 training pixels were used in total. Following
classification, each of the burned area outputs were filtered

using a 3 � 3 pixel filter. Classified results were manually
edited as needed. Each version of the burned-area extent was

converted to a Euclidean distance map indicating the distance

to the nearest unburned pixel. Conifer seedling density
following high severity wildfire has been shown to be directly
related to distance from surviving forest (Donato et al. 2009;

Kemp et al. 2016) and can decrease sharply as short as 50 m
from the surviving forest (Chambers et al. 2016).

Table 1. Characteristics of satellites that collected imagery over the Waldo Canyon fire burned area

Landsat ETMþ, Landsat Enhanced Thematic Mapper Plus

Platform Data availability

(years)

Spatial

resolution (m)

Data

collection type

Image

extent (km)

Spectral

range (mm)

Spectral resolution

(number of bands)

Sponsor, country

QuickBird-2 2001–2014 2.4 (delivered as 2 m) On-demand 18 0.43–0.92 4 DigitalGlobe, USA

GeoEye-1 2008–present 1.65 (delivered as 2 m) On-demand 15 0.45–0.92 4 DigitalGlobe, USA

Worldview-2 2009–present 1. 8 (delivered as 2 m) On-demand 16 0.4–1.04 8 DigitalGlobe, USA

Worldview-3 2014–present 1.2 (delivered as 2 m) On-demand 13 0.4–2.37 16 DigitalGlobe, USA

Landsat

ETMþ
1999–2003, 2003–

present (scan-line

corrector off)

30 Continuous

(16-day revisit)

185 0.45–2.35,

10.4–12.5

8 NASA, USA

Table 2. Images used to map burned-area extent and map vegetation recovery and image date in relation to the timing of the Waldo Canyon fire

which burned from June 23, 2012 to July 10, 2012

BAECV, Burned Area Essential Climate Variable; MTBS, Monitoring Trends in Burn Severity; BAER, Burned Area Emergency Response

Platform Spatial

resolution (m)

Date Date relative to

fire (July 10, 2012)

Worldview-2 2 7-Aug-10 �2 years

Worldview-2 2 7-Aug-11 �1 year

Worldview-2 2 4-Jul-12 �6 days

GeoEye-1 2 11-Jul-12 þ1 day

QuickBird-2 2 25-Sept-13 1 year, 8 days

Worldview-2 2 30-Aug-14 2 years, 50 days

Worldview-3 2 30-Aug-15 3 years, 50 days

Worldview-3 2 17-Sep-16 4 years, 68 days

Landsat BAECV 30 2012 annual – compiled, 13-Jul-12 (primary image) þ 3 days

Landsat MTBS 30 18-Sep-10 (pre), 26-Sep-13 (post) þ 1 year, 62 days

Landsat BAER 30 11-Jun-12 (pre), 13-Jul-12 (post) þ 3 days
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Fig. 1. Raw imagery of the study site including, (a) a pre-fire Worldview-2 image collected on 7 August 2010, (b) a Worldview-2 image collected on 4 July

2012 as the fire event was ending, and (c) a Worldview-3 image collected on 17 September 2016, 4 years post-fire. Copyright 2017 DigitalGlobe, NextView

Licence.
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Object-based burn severity

Fire-severity maps help characterise immediate and long-term
fire effects (Robichaud et al. 2007). In using the term ‘fire
severity,’ we are referring to a relative measure of vegetation

consumption, mortality and soil alteration (e.g. charring)
resulting from the fire event and measured using a relative
change in surface reflectance (Lentile et al. 2006). We used

the software, eCognition (ver. 9.2.1, Trimble, Westminster,
CO, USA), to process aWorldview-2 image (collected on 4 July
2012) into burn-severity classes. This software uses an object-

orientated approach in which an image is first segmented from
pixels into meaningful objects or polygons, and then classified
using rulesets and algorithms. The objects can represent indi-

vidual trees or snags, or represent land-cover patches (Fig. 2).
The 2012 Worldview-2 image was segmented into objects
representing land cover patches using all bands from both the
pre-fire 2011 Worldview-2 image (collected 7 August 2011)

and the post-fire 2012 Worldview-2 image (collected 4 July
2012) at default segmentation levels (scale ¼ 10, shape ¼ 0.1,
compactness¼ 0.5), where scale refers to the size of the objects,

shape refers to the textural homogeneity of the objects
(smoothness and compactness) and compactness informs the
shape of the objects. The 2012 Worldview-2 image bands were

assigned twice theweight of the 2011Worldview-2 image bands
to emphasise segmentation along burn severity boundaries. The
2011 image was included because burn severity depends in part

on pre-fire vegetation. We used the distribution of change
between the 2011 and 2012 Burned Area Index (BAI, 1C ((0.1
– red)2 þ (0.06 – NIR)2)) (Martin 1998) and the Soil-Adjusted

Vegetation Index (SAVI, ((NIR – red)C (NIRþ redþ 0.5))�
1.5) (Huete 1988) for a visually identified sample of polygons or
objects representing the different severity classes to develop a

series of thresholds or rulesets to classify the objects into the
three severity classes. SAVI was found to bemore effective than
NDVI because of bright soils present across parts of the site. The
visually identified samples were selected by viewing the objects

in relation to the pan-sharpened Worldview images (0.5-m
resolution). The identification of low burn-severity samples, in
particular, was also based on areas identified as such, and

location recorded using a Trimble R2 GPS unit (Sunnyvale, CA,
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N

Segmented snags Object segmentation
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(a ) (b ) (c )

(f )(e )(d )

Fig. 2. High-resolution images can be segmented into individual objects such as snags (a and d, Worldview-3, from 30 August 2015) or larger objects to

classify cover types from pre-fire imagery (b and e, Worldview 2, from 7 August 2011) and post-fire imagery (c and f, Worldview-3, from 30 August 2015).

Copyright 2011, 2015 DigitalGlobe, NextView Licence.

D Int. J. Wildland Fire M. K. Vanderhoof et al.



USA) during visits to the burned area on 25 and 26 October
2017. The burn-severity categories were defined based on
changes to vegetation and surface organic matter (e.g. modified

from Keeley 2009):

� High severity – surface organic matter was heavily charred

and canopy trees (if previously present) were killed and
needles consumed.

� Moderate-severity – surface organic matter was charred.

Most needles were killed but not consumed.
� Low-severity – canopy trees retained green needles, but

surface indicated a faint charcoal signal.

� Unburned – no visual evidence of a burn.

Additional rulesets were developed to account for inconsis-

tencies in theBAI or SAVI values from2011 or 2012 for specific
portions within the study area. Remaining objects that were
left unclassified were segmented into smaller, more spectrally

homogenous objects (scale ¼ 5 to 7), with the classification
process and the creation of rule sets repeated each time. The
output was also visually checked and manually edited, as
needed, in ArcGIS 10.3 (ESRI, Redlands, CA, USA). As the

output was not validated against field efforts, we can only
compare the distribution of severity classes relative to other
severity estimates (e.g. Monitoring Trends in Burn Severity

(MTBS), BAER).

Ancillary burn extent and severity datasets

Burned extent classified from GeoEye-1 and Worldview-2 was

compared with burn extent produced by the USGS Landsat
Burned Area Essential Climate Variable (BAECV) product, the
MTBS dataset and fire statistics reported by the US Forest

Services’ BAER team. The BAECV product uses the entire
Landsat archive to produce an annual burned-area raster for the
conterminous United States (1984–2015) (Hawbaker et al.

2017). Its algorithm relies on a suite of predictor variables cal-

culated from dense time series of Landsat data including both
single-scene, pre-fire surface conditions (e.g. 3-year lagged
means and standard deviations) and change from pre-fire sur-

face conditions. These variableswere used as the inputs to train a
generalised boosted regression model (Hastie et al. 2009) to
predict the probability that a pixel has burned in any given

Landsat image. Burn-classification images were generated by
applying thresholds and a region-growing method to the burn
probability images.

The MTBS burn-severity rasters are classified for each fire
using a histogram of the Landsat differenced Normalised
Burn Ratio (dNBR) (pre- and post-fire images were collected
on 18 September 2010 and 26 September 2013) (Eidenshink

et al. 2007). We used the low, moderate and high burn-severity
classes (Sparks et al. 2015) as a comparison for total burn extent
and severity categorisation. The primary concern regarding

the MTBS dataset is that class thresholds are fire specific and
therefore not directly comparable across fires or necessarily
related to objective ecological metrics (Kolden et al. 2015). We

also considered the soil burn-severity raster generated by the
BAER team (USFS 2012). BAER uses pre- and post-fire Land-
sat images to generate change to NBR (pre-and post-fire images
were collected on 11 June 2012 and 13 July 2012). Teams

dispatched to the burned site then collect field observations of
ground cover and soil infiltration rates that are used to inform
NBR thresholds. BAER defines low burn severity as showing

intact ground cover, moderate severity as showing reduced
ground cover and some loss of soil organics, and high burn
severity as showing potential for increased flows leading to

flooding and debris flows (Parsons et al. 2010).

Mapping vegetation recovery

Post-fire recovery of vegetationwas classified using pixel-based

NDVI as well as by classifying vegetation types using an object-
based approach in eCognition. NDVI was calculated for the
high-resolution time series images (2010–2016) across the

burned area. NDVI values range from �1 (e.g. water) to 1
(dense, healthy green vegetation) (Tucker 1979). Moderate
values tend to represent shrub and grassland cover types (0.2 to
0.3) whereas higher values represent areas with high above-

ground biomass (0.6 to 0.8). A NDVI threshold of 0.3 was
selected based on consultation with personnel very familiar
with the burned site in the years immediately following the fire.

This threshold is also consistent with values that have been
previously used to define ‘vegetated’ (e.g. Gandhi et al. 2015)
andwas selected here to define areas that were vegetated pre-fire

and revegetated following the fire event. In image processing,
SAVI and NDVI were alternatively used when one index
showed greater class separability relative to the other index.

To classify vegetation types across the time series, we first

classified the pre-fire Worldview-2 image (7 August 2011)
using nearest-neighbour classification in eCognition. This
approach integrates multiresolution segmentation with a super-

vised classification algorithm. The image was segmented into
objects meant to represent patches of vegetation (scale ¼ 10,
shape¼ 0.2, compactness¼ 0.5). Objects with a NDVI of,0.4

were re-segmented (scale¼ 7, shape¼ 0.1, compactness¼ 0.5)
into smaller, more spectrally homogenous objects to improve
the classification of unvegetated objects. Training objects

(n ¼ 30 for each class) were identified for coniferous, riparian,
bare soil (i.e. bare soil, rock and sediment runoff), low-density
shrub and high-density shrub cover classes. Training objects
were classified and analysed using the ‘Feature Space Optimi-

sation’ tool to identify the object features with the best class
separation values. The object features were characterised using
the following Worldview-2 band or band combinations: mean

red edge band, the NIR2 band, standard deviation of green band,
red edge band, NIR1 band, NIR2 band, SAVI, pixel ratios
coastal band/all bands, green band/all bands, red edge band/all

bands, a shape index, brightness with a near-infrared focus
(red edge þ NIR1 þ NIR2), and a green–red vegetation index
(GRVI) (Falkowski et al. 2005). The nearest-neighbour classi-
fication, a supervised classification, was then run for all objects

within the study area. Additional rulesets were applied using
elevation from the USGS NED (10-m resolution) (Gesch et al.

2002) and object intersection or lack of intersection with a

stream as mapped by the high-resolution National Hydrography
Dataset (NHD) (US Geological Survey 2013) to reduce confu-
sion between riparian, coniferous and shrub cover types.

For the 4 July 2012 Worldview-2 image, the objects
previously identified as moderate or high burn severity, were
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reclassified as minimally recovered. Unburned and low severity
burned areas were assigned the 2011 cover class type. For the
post-fire images (2013–2016), we used the pre-fire vegetation

type and our field-based knowledge of the site-specific recovery
trajectories to assist in image classification. A hierarchical
approach was used where the 2012 burn severity was defined
as the top level, the 2011 classified image was defined as the

mid-level, and the recovery images (2013–2016) were defined
as the bottom level. This approach allowed for (1) synchronisa-
tion of object edges between levels and (2) burn severity and pre-

fire cover class to inform post-fire cover class. Objects classified
in 2012 as burned or minimally recovered were re-segmented
and reclassified in each of the post-fire years. We used SAVI

thresholds, specific to each year, to indicate vegetation recovery
or a shift from minimally recovered to aspen-herbaceous,
riparian or shrub (recovery threshold averaged .0.37 mean

SAVI). If the SAVI mean and standard deviation of the object
was above a year-specific threshold, and it was classified as
coniferous in 2011 and moderate or high burn severity in 2012,
then the object was reclassified as coniferous (averaged .0.56

mean SAVI and .0.14 standard deviation SAVI). For objects
with low SAVI values, we used brightness thresholds to distin-
guish between bare soil and minimally recovered objects (mean

SAVI ,0.27 and brightness $20.5, reclassified as bare soil).
We found applying thresholds and rulesets to the post-fire
images, based on the 2012 classified image, produced improved

outputs relative to classifying each post-fire image indepen-
dently or classifying the post-fire images as a time series.
Differences in the thresholds between years suggested that
variability in image quality, timing and light conditions influ-

enced our interpretation of recovery status and creates added
challenges for time series analysis.

We visited the burned area on 25 and 26 October 2017 and

used GPS units to collect polygons representing homogenous
vegetation classes. Although the condition of vegetation in fall
(autumn) 2017 could not be used to directly validate image

outputs from previous years (2011–2016), wewere able to verify
themajor plant species present across the study area and used the
polygons to increase our confidence regarding our visual inter-

pretation of vegetation classes. Validation points (n ¼ 100 per
class per year) were generated randomly and assigned a class

type using visual interpretation of the raw, pan-sharpened image
(0.5-m resolution). When possible, points were reused across
years, with the appropriate class reassessed in each year. Cover

classes (e.g. water) that contributed,2% of the study area extent
were not validated. Validation points were manually moved
(,2% of the validation points) when we either had no visual
confidence regarding the appropriate cover class or a point

occurred at the intersection of twocover classes. Pointmovement
occurred only to ensure that the vegetation class assigned to the
validation points was correct. Points were located to the extent

possible to represent random locations within a single cover
class. In addition to visual cues, the transition from theminimally
recovered class to a time when enough seedling-saplings were

present and large enough to transition to the aspen-herbaceous
class was made more systematic by restricting minimally recov-
ered points to areas with a NDVI of,0.3 and restricting aspen-

herbaceous validation points to areas with a NDVI of .0.3.
Confidence intervals (95%) were calculated for the estimates of
the percentage cover of each of the classes using the approach
outline by Olofsson et al. (2013).

The phenology at the time of image collection can affect our
interpretation of vegetation recovery. To determine the season-
ality effect of image timing, we identified a homogenous area of

(1) by quaking aspen (2.5 ha, 0.6 km north of burned area), and
(2) grass (26 ha, 3.1 km north-west of burned area) that were not
affected by the fire event. We extracted the mean NDVI value

across each of the polygons for all available Landsat dates
(2010–2016) using three image collections provided by Google
Earth Engine (Google, Mountain View, CA, USA): (1) Landsat
5 ThematicMapper (TM) 8-day NDVI composite, (2) Landsat 7

8-day NDVI composite, and (3) Landsat 8 8-day NDVI com-
posite. We provided the date of the peak NDVI value in each
year, as well as how the NDVI value for the Landsat date best

matching the image date compared with the seasonal peak value
(Table 3).

Results

Variability in the heterogeneity of burn extent and severity

Image characteristics influenced total burned-area extent.
Burned-area extent tended to be smallest for our pixel-level

Table 3. Recovery of vegetation following the fire across the Waldo Canyon fire study area, defined using the fire perimeter

Vegetated areas were defined as 4 m2 cells showing a Normalised Difference Vegetation Index (NDVI) of 0.3 or greater. Revegetation began stabilising in

2015. The estimate for 2012 burned-area extent or minimal-recovery area is derived from NDVI not the pixel-based classification of burned-area extent. For

reference, the influence of image collection date on NDVI values was also calculated using non-burned reference areas and presented as how the non-burned

NDVI values on the image collection date compared with the annual peak NDVI values (Aspen (percentage of annual maximum), Grass (percentage of annual

maximum)). NDVI values in the bottom portion of the table are derived from Landsat 8-day NDVI products available in Google Earth Engine. Minimal

recovery percentage was calculated as green to non-green transition (excluding pre-fire bare soil or low vegetation areas, which comprised 12% in 7 August

2011

Date Minimal

recovery (%)

Minimal

recovery (ha)

Re-vegetated

to date (ha)

Satellite Aspen (%) Grass (%) Landsat date

(8-day product)

Peak NDVI Landsat

date (aspen)

Peak NDVI Landsat

date (grass)

4-Jul-12 78.2 5798.3 0 Worldview-2 100.0 48.6 11-Jul-12 11-Jul-12 28-Aug-12

25-Sep-13 49.6 3673 2125.3 QuickBird-2 97.3 96.6 22-Sep-13 21-Aug-13 21-Aug-13

30-Aug-14 35.2 2611.5 3186.8 Worldview-2 100.0 46.9 6-Sep-14 6-Sep-14 5-Aug-14

30-Aug-15 35.3 2616.2 3182.1 Worldview-3 40.7 70.6 6-Sep-15 20-Jul-15 13-Aug-15

17-Sep-16 37.6 2785.6 3012.7 Worldview-3 95.6 69.9 13-Sep-16 11-Jul-16 11-Jul-16
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classifications of the high-resolution imagery (5988 ha for
GeoEye-1 and 4387 ha for Worldview-2) and largest for the

various Landsat-based products (6495, 7385, 7125 ha for
BAECV, BAER and MTBS respectively; Table 4, Fig. 3).
Variability in mapped burned-area extent and within-fire het-

erogeneity influenced our interpretation of the amount of area at
risk for reduced conifer regeneration (.50 m from surviving
forest). At-risk areas ranged from 14% of the burned area

mapped using Worldview-2 to 84% of the burned area mapped
by the BAER team with Landsat (Table 4, Fig. 3). Fire severity
as mapped using an object-based approach with a Worldview-2

image showed 51, 20 and 29% high, moderate and low burn

severity respectively (Table 4, Fig. 4). In comparison, severity
mapped by the MTBS dataset (an extended assessment with the

post-fire image 1 year and 2 months following the fire) and the
BAER team (post-fire image immediately following fire)
showed greater areas identified as low and moderate severity

categories, relative to the Worldview-2 output (Table 4, Fig. 4).
Visually, relative to the Worldview-2 output, both BAER and
MTBS overestimated low and moderate burn severity and

underestimated high burn severity (Fig. 4). We note, however,
that because of differences in image dates used and approaches
to define severity, these differences serve primarily to highlight

how variable our interpretations of burn severity can be.

Table 4. Total area classified as burned, total burned area.50 m from surviving forest, and distribution of severity categories, as available, using

each source of imagery

For the Worldview-2 image, the pixel-based classification results are reported for burned-area extent and object-based classification results are reported for

severity distribution. BAECV, Burned Area Essential Climate Variable; MTBS, Monitoring Trends in Burn Severity; BAER, Burned Area Emergency

Response

Satellite Burned-area

extent (ha)

Burned area .50 m from

surviving forest (ha)

Burned area .50 m

from surviving forest (%)

Low

severity (%)

Moderate

severity (%)

High

severity (%)

GeoEye-1 5988 1840 30.7 na na na

Worldview-2 4387 (pixel) 598 (pixel) 13.6 (pixel) 28.8 (object) 20.0 (object) 51.2 (object)

Landsat BAECV 6495 5278 81.3 na na na

Landsat MTBS 7125 5669 79.6 29.6 35.9 34.5

Landsat BAER team 7385 6201 84.0 41.6 39.9 18.5
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Fig. 3. Burned-area extent as mapped by (a) GeoEye-1 (2-m resolution), (b) Worldview-2 (2-m resolution), (e) Landsat Burned Area Essential Climate

Variable (BAECV) (30-m resolution), and (f) LandsatMonitoring Trends in Burn Severity (MTBS) (30-m resolution), and the corresponding distance to seed

sources or unburned sites (c, d, g, h).
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Post-fire recovery across vegetation types

Using NDVI to isolate areas that showed a transition from
vegetated to non-vegetated, we found that 78% of the area

within the burn perimeter experienced a decline in NDVI from
.0.3 to,0.3 in 2012 (Fig. 5). One year post-fire, this decreased
to 50% and, by two years post-fire, this declined to 35% after

which the trend stabilised (Table 3, Fig. 5). The time series of
images were segmented into objects representing land cover
units (Fig. 2) and then classified (Fig. 6). Overall accuracy of the

cover-class maps ranged from 84 to 91% and averaged 87% for
2011–2016 (Table 5). Aspen-herbaceous showed the weakest
accuracy with errors of omission and commission averaging 22

and 24% respectively. The remaining cover classes showed
errors of omission (averaged) ranging from 11 to 14% and errors
of commission (averaged) ranging from 2 to 17% (Table 5). Pre-
fire, the study area was 73% coniferous and 19% shrub (Table 6,

Fig. 6). In 2012, 62% of the study area changed to minimal
recovery, whereas coniferous cover decreased to 25% and shrub
to 8%. The shrub cover class recovered rapidly, within 1 year it

was back to 18% (Table 6, Fig. 6). In contrast, areas that
were coniferous forest have seen minimal recovery. Four years
post-fire, the previously coniferous areas are divided between

aspen-herbaceous (26%) and minimally recovered (22%).
Riparian and bare soil cover classes, however, showed limited

change in percentage cover from pre- through post-fire
(Table 6). Additional examples of the classified objects both
pre- and post-fire are shown in Fig. 7 and provide examples of

the distribution of areas classified as minimal recovery. In
addition, a line graph showing the change in vegetation cover
classes from 2011 through 2016 provides a visual of the relative

change in vegetation class abundance (Fig. 8).
We also compared our interpretation of vegetation cover

using the pixel-based NDVI to the object-based vegetation

cover classes. Because pixels showing minimal vegetation can
be associated with nearby vegetated pixels when using an
object-based approach, we found that the site was interpreted
as showing greater vegetation cover using an object-based

approach relative to using a pixel-based approach. Pre-fire,
the object-based approach showed the site to be 96% vegetated,
relative to the pixel-based approach that indicated 88% of

the site was vegetated (Table 6). The contrast was even greater
post-fire. In 2016, the object-based approach estimated that 74%
of the site was vegetated, relative to 57% estimated using the

pixel-based approach (Table 6).
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(h )(g )(f )(e )

Fig. 4. (a) The raw image of the entireWaldoCanyon fire, a portion of the burned areas (e) and a comparison ofmapped fire severity usingWorldview-2, in

eCognition (b and f ) relative to the Landsat basedMonitoring Trends in Burn Severity (MTBS) dataset (c and g), and the Burned Area Emergency Response

(BAER) soil burn severity dataset (d and h). Copyright 2012 DigitalGlobe, NextView Licence.
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Fig. 5. Change in threshold Normalised Difference Vegetation Index (NDVI) as derived from the time series of high-resolution images from pre-fire

through 4 years post-fire within the Waldo Canyon fire perimeter. Vegetated is defined as a pixel having a NDVI greater than 0.3.
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Fig. 6. Change in landcover types from pre-fire through 4 years post-fire using an object-based approach with Worldview-2

(a, b, d), QuickBird-2 (c), and Worldview-3 imagery (e, f ).

Post-fire condition and recovery Int. J. Wildland Fire I



Discussion

The post-fire patterns in vegetation recovery observed across

theWaldo Canyon fire were consistent with expectations. Much
of the area that was dominated by conifer species before the fire,
transitioned to quaking aspen, a common post-fire early suc-
cessional species (Fraser et al. 2004; Paragi and Haggstrom

2007; Smith et al. 2011). Seral aspen stands often transition to
climax conifer stands (Smith and Smith 2005; Bergen and
Dronova 2007). In the shrub dominated areas, the Gambel oak

recovered quickly post-fire. Although fire readily kills the
aboveground portion of Gambel oak, intense resprouting typi-
cally occurs almost immediately post-fire and often causes

stands of Gambel oak to become even denser than pre-fire
(Jester et al. 2012). At 4 years post-fire, a portion of the burned
area remained classified as ‘minimally recovered.’ These areas

fit into several categories including areas (1) dominated by
dense snags either limiting or masking vegetation recovery or
(2) dominated by sparse vegetation, not dense enough to show
spectral similarity to aspen-herbaceous objects. Degradation

of soil conditions post-fire, due to erosion and increased

water repellency, particularly on steep slopes, can limit
resources (e.g. water, nutrients) and result in sparser vegetation
(Puigdefábregas and Sánchez 1996; Turner et al. 2003; Larsen

et al. 2009). Post-fire vegetation recovery maps can potentially
be used to identify such areas to inform and evaluate manage-
ment decisions.

High-resolution imagery, and in particular the application of

object-based approaches with high-resolution imagery, has the
potential to improve our efforts to monitor post-fire recovery.
Object-based approaches are most easily applied in anthropo-

genic settings in which features, such as roads or houses, tend to
be reasonably uniform in size or shape, lending themselves to
automated extraction (Lang andBlaschke 2003). In recent years,

however, an increasing number of efforts have applied an
object-based approach in natural settings, including post-fire
environments (Mitsopoulos et al. 2016; Sertel and Alganci

2016; Lohberger et al. 2017). Using a pixel-based approach at
2-m resolution, heterogeneity present within a given cover type
(e.g. scattered shrubs with a grass understorey) can complicate
classification efforts. Such detailed information can make it

Table 5. Accuracy of land cover maps by year and land cover category

Errors of omission and commission by image year and land cover category. Overall accuracy statistics are provided for each image year. Average (2011–2016)

accuracy for all land cover categories as well as for each land cover category is shown in bold. NA values are listed when no areas were classified as that land

cover category

Year Overall accuracy (%) Error type (%) Coniferous Riparian Shrub Bare ground Minimal recovery Aspen-herbaceous

2011 91.0 Omission 4.0 14.0 15.0 3.0 na na

Commission 13.5 7.5 14.1 0.0 na na

2012 88.2 Omission 14.0 23.0 10.0 8.0 8.0 na

Commission 20.4 8.3 17.4 0.0 11.1 na

2013 86.5 Omission 17.0 6.0 13.0 13.0 11.0 21.0

Commission 9.8 7.8 20.2 2.2 17.6 21.0

2014 84.8 Omission 12.0 12.0 15.0 18.0 18.0 16.0

Commission 12.9 10.2 16.7 1.2 18.8 27.0

2015 86.0 Omission 8.0 12.0 16.0 15.0 11.0 22.0

Commission 16.4 9.3 16.0 3.4 17.6 19.6

2016 84.3 Omission 12.0 13.0 14.0 9.0 16.0 30.0

Commission 17.0 7.4 18.1 3.2 20.8 26.3

Average 86.8 Omission 11.2 13.3 13.8 11.0 12.8 22.3

Commission 15.0 8.4 17.1 1.7 17.2 23.5

Table 6. Relative distribution of cover classes by year (2011–2016) within the study area

Object-based recoverywas defined as the percentage of the study area classified as any cover class except minimal recovery. Pixel-based recovery was defined

as the percentage of the study area with a Normalised Difference Vegetation Index (NDVI) of.0.3. Cloud and cloud shadow was not included in the relative

percentage and represented,1% in all years except 2016 (2.4% of the study area). 95% confidence intervals are provided for each of the cover categories for

which accuracy statistics had been calculated

Year Coniferous (%) Riparian (%) Shrub (%) Bare

soil (%)

Minimal

recovery (%)

Aspen-herbaceous (%) Object-based

vegetated (%)

Pixel-based

vegetated (%)

2011 73.2� 4.1 3.8� 1.2 18.9� 1.8 4.1� 0.5 na na 95.9 88

2012 24.8� 2.2 2.1� 1.5 8.0� 1.4 3.2� 0.8 61.8� 3.6 na 34.9 19.2

2013 26.7� 2.1 3.6� 1.0 17.6� 1.8 3.2� 1.1 34.9� 2.6 13.9� 1.9 61.8 44.4

2014 26.6� 2.0 3.7� 1.3 18.3� 1.8 3.4� 1.2 16.5� 1.9 31.5� 2.8 80.1 57

2015 26.9� 2.0 3.7� 1.2 17.6� 1.8 3.5� 1.2 20.7� 1.8 27.6� 2.5 75.8 56.9

2016 26.4� 2.1 3.8� 1.2 17.8� 1.8 3.8� 0.9 22.2� 2.1 26.0� 2.7 74 54.9
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challenging to classify both grass and shrub pixels as a shrub-
cover type. Object-based approaches can improve such efforts

(e.g. Laliberte et al. 2004), but natural diversity across a single
cover class (e.g. wetland grasses v.willows in a riparian habitat,

varying shrub or conifer density) can also make it challenging to
obtain adequate accuracy. The advantage of an object-based

approach is that it pairs common classifications (e.g. supervised
classification, random forest) with additional decision points
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Fig. 7. Detailed examples of object-based cover classification from pre-fire conditions (a and b, Worldview-2, 7 August 2011), and post-fire

conditions (c and d, e and f, Worldview-3, from 30 August 2015). Copyright 2011, 2015 DigitalGlobe, NextView Licence.
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including object creation, applying a hierarchical structure to
input datasets, and the option to implement additional rulesets
and thresholds before classification. This flexibility allows users

to enhance outputs, but alternatively, classification efforts can
rapidly become time intensive and an algorithm personalised to
a specific site makes it challenging to automate the approach at a

larger scale or transfer the approach to other sites.
The application of high-resolution imagery to burned areas

can enable the mapping of live crowns and small patches of bare

soil (,100 m2), rock and unburned vegetation within an other-
wise continuous burned area (Vanderhoof et al. 2017). How
these detailed features are mapped will, in turn, influence

estimates of burned area and fire effects. For example, recent
studies have documented the effect of distance to unburned areas
on conifer regeneration (Donato et al. 2009; Chambers et al.

2016; Kemp et al. 2016). The present study demonstrated how

our interpretation of distance to unburned changes, and conse-
quently, our interpretation of conifer regeneration probability,
when using high-resolution imagery relative to Landsat imagery.

However, spatial resolution is not the only driver of burned-
area extent. Total-burned area also varied between the two
sources of high-resolution imagery despite identical spatial

resolutions and similar spectral ranges. Differences can be
attributed to variability in image quality and timing of image
collection. In this case, the Worldview-2 image was collected
6 days before the fire being extinguished. Differences can also

be attributed to image classification techniques, which may
explain the differences in burned-area extent as defined by
the BAECV, MTBS and BAER efforts, all of which relied on

Landsat imagery. Differences between the Landsat burned area
and high-resolution burned area is likely attributable to multiple
of these factors. For example the BAECV algorithm contained

a region-growing component (Hawbaker et al. 2017) that likely
reduced within-fire heterogeneity, whereas the resolution of the
high-resolution DigitalGlobe imagery was more conducive to

identifying within-fire heterogeneity.

Consistent classification of fire severity is even more chal-
lenging than mapping burned-area extent as fire severity can
refer to multiple aspects of a fire event (Lentile et al. 2006). This

is evident in Fig. 4, as very high tree mortality resulted in much
of the burned area being classified as high severity by our
analysis, but classified as moderate severity by the BAER team,

which focussed on soil. Even if we can agree to a general
definition of fire severity, for instance, referring to the loss of
organic matter or changes to soil characteristics (Keeley 2009),

linking remotely sensed measurements to the physical or eco-
logical processes can be difficult (Lentile et al. 2006). However,
remote classification of severity is essential as fire severity has

implications for ecosystem recovery including shifts in species
composition, soil stabilisation and carbon emissions (Kokaly
et al. 2007;Meigs et al. 2009; Johnstone et al. 2011). Our finding
that MTBS may have overestimated low burn severity and

underestimated high burn severity is consistent with the findings
of others (e.g. Cansler and McKenzie 2012) and represents a
concern previously raised by Kolden et al. (2015). However in

this case, MTBS mapped severity as an extended assessment,
meaning that the post-fire image was collected more than 1 year
post-fire and this lag may have influenced the interpretation of

burn severity categories. Regardless, standardising fire severity
classification methods across diverse fires and ecosystems
remains a considerable challenge.

Although efforts to monitor fire events remain dominated by

coarser-resolution satellites such as Landsat, AVHRR and
MODIS, the launch of networks of microsatellites (e.g. Dove,
RapidEye (Planet, San Francisco, CA, USA)), will provide

nearly complete spatial coverage at near-daily return intervals
and at a global scale, greatly improving opportunities to apply
high-resolution imagery (#5-m resolution) to fire events across

the globe. Differences in image resolution, extent and spectral
bands, relative to Landsat, mean novel approaches may be
necessary to allow for the effective application of this imagery

type to map and monitor fire events.
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Conclusion

In this study, we found that applying an object-based approach

to a time series of high-resolution images collected both pre- and
post-fire, allowed us to move beyond simplistic measures of
vegetation recovery (e.g. NDVI) and assess differential rates in

recovery across pre-fire vegetation classes. Output maps
produced using such an approach could be used to inform
management actions or evaluate the potential effectiveness of

post-fire treatments. We also found that imagery source can
influence interpretation of post-fire burn condition (i.e. burned-
area extent, severity and heterogeneity). Variation in these
parameters can, in turn, affect perceived needs for post-fire

treatment across a burned area. Although these patterns should
be assessed across a diversity of fires, the findings are consistent
with Vanderhoof et al. (2017) in which fire heterogeneity was

found to be closely related to image resolution. Linking remote
sensing efforts to the scale at which management decisions are
made (e.g. tree, patch, fire event) will be critical to informing

the appropriate resolution of imagery to be used in post-fire
assessments. As high-resolution, multispectral imagery
becomes increasingly available, so will opportunities for

remote, detailed monitoring of post-fire conditions.
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